20 research outputs found

    Numerical Investigation of Corrugated Wire Mesh Laminate

    No full text
    The aim of this work is to develop a numerical model of Corrugated Wire Mesh Laminate (CWML) capturing all its complexities such as nonlinear material properties, nonlinear geometry and large deformation behaviour, and frictional behaviour. Development of such a model will facilitate numerical simulation of the mechanical behaviour of the wire mesh structure under various types of loading as well as the variation of the CWML configuration parameters to tailor its mechanical properties to suit the intended application. Starting with a single strand truss model consisting of four waves with a bilinear stress-strain model to represent the plastic behaviour of stainless steel, the finite element model is gradually built up to study single-layer structures with 18 strands of corrugated wire meshes consistency and double- and quadruple-layered laminates with alternating crossply orientations. The compressive behaviour of the CWML model is simulated using contact elements to model friction and is compared to the load-deflection behaviour determined experimentally in uniaxial compression tests. The numerical model of the CWML is then employed to conduct the aim of establishing the upper and lower bounds of stiffness and load capacity achievable by such structures

    Specular Reflection Detection and Inpainting in Transparent Object through MSPLFI

    No full text
    Multispectral polarimetric light field imagery (MSPLFI) contains significant information about a transparent object’s distribution over spectra, the inherent properties of its surface and its directional movement, as well as intensity, which all together can distinguish its specular reflection. Due to multispectral polarimetric signatures being limited to an object’s properties, specular pixel detection of a transparent object is a difficult task because the object lacks its own texture. In this work, we propose a two-fold approach for determining the specular reflection detection (SRD) and the specular reflection inpainting (SRI) in a transparent object. Firstly, we capture and decode 18 different transparent objects with specularity signatures obtained using a light field (LF) camera. In addition to our image acquisition system, we place different multispectral filters from visible bands and polarimetric filters at different orientations to capture images from multisensory cues containing MSPLFI features. Then, we propose a change detection algorithm for detecting specular reflected pixels from different spectra. A Mahalanobis distance is calculated based on the mean and the covariance of both polarized and unpolarized images of an object in this connection. Secondly, an inpainting algorithm that captures pixel movements among sub-aperture images of the LF is proposed. In this regard, a distance matrix for all the four connected neighboring pixels is computed from the common pixel intensities of each color channel of both the polarized and the unpolarized images. The most correlated pixel pattern is selected for the task of inpainting for each sub-aperture image. This process is repeated for all the sub-aperture images to calculate the final SRI task. The experimental results demonstrate that the proposed two-fold approach significantly improves the accuracy of detection and the quality of inpainting. Furthermore, the proposed approach also improves the SRD metrics (with mean F1-score, G-mean, and accuracy as 0.643, 0.656, and 0.981, respectively) and SRI metrics (with mean structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), mean squared error (IMMSE), and mean absolute deviation (MAD) as 0.966, 0.735, 0.073, and 0.226, respectively) for all the sub-apertures of the 18 transparent objects in MSPLFI dataset as compared with those obtained from the methods in the literature considered in this paper. Future work will exploit the integration of machine learning for better SRD accuracy and SRI quality

    Specular Reflection Detection and Inpainting in Transparent Object through MSPLFI

    No full text
    Multispectral polarimetric light field imagery (MSPLFI) contains significant information about a transparent object’s distribution over spectra, the inherent properties of its surface and its directional movement, as well as intensity, which all together can distinguish its specular reflection. Due to multispectral polarimetric signatures being limited to an object’s properties, specular pixel detection of a transparent object is a difficult task because the object lacks its own texture. In this work, we propose a two-fold approach for determining the specular reflection detection (SRD) and the specular reflection inpainting (SRI) in a transparent object. Firstly, we capture and decode 18 different transparent objects with specularity signatures obtained using a light field (LF) camera. In addition to our image acquisition system, we place different multispectral filters from visible bands and polarimetric filters at different orientations to capture images from multisensory cues containing MSPLFI features. Then, we propose a change detection algorithm for detecting specular reflected pixels from different spectra. A Mahalanobis distance is calculated based on the mean and the covariance of both polarized and unpolarized images of an object in this connection. Secondly, an inpainting algorithm that captures pixel movements among sub-aperture images of the LF is proposed. In this regard, a distance matrix for all the four connected neighboring pixels is computed from the common pixel intensities of each color channel of both the polarized and the unpolarized images. The most correlated pixel pattern is selected for the task of inpainting for each sub-aperture image. This process is repeated for all the sub-aperture images to calculate the final SRI task. The experimental results demonstrate that the proposed two-fold approach significantly improves the accuracy of detection and the quality of inpainting. Furthermore, the proposed approach also improves the SRD metrics (with mean F1-score, G-mean, and accuracy as 0.643, 0.656, and 0.981, respectively) and SRI metrics (with mean structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), mean squared error (IMMSE), and mean absolute deviation (MAD) as 0.966, 0.735, 0.073, and 0.226, respectively) for all the sub-apertures of the 18 transparent objects in MSPLFI dataset as compared with those obtained from the methods in the literature considered in this paper. Future work will exploit the integration of machine learning for better SRD accuracy and SRI quality
    corecore